
D02 – Ordinary Differential Equations

D02RAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02RAF solves the two-point boundary-value problem with general boundary conditions for a system of
ordinary differential equations, using a deferred correction technique and Newton iteration.

2 Specification

SUBROUTINE D02RAF(N, MNP, NP, NUMBEG, NUMMIX, TOL, INIT, X, Y, IY,
1 ABT, FCN, G, IJAC, JACOBF, JACOBG, DELEPS,
2 JACEPS, JACGEP, WORK, LWORK, IWORK, LIWORK, IFAIL)
INTEGER N, MNP, NP, NUMBEG, NUMMIX, INIT, IY, IJAC,
1 LWORK, IWORK(LIWORK), LIWORK, IFAIL
real TOL, X(MNP), Y(IY,MNP), ABT(N), DELEPS,
1 WORK(LWORK)
EXTERNAL FCN, G, JACOBF, JACOBG, JACEPS, JACGEP

3 Description

D02RAF solves a two-point boundary-value problem for a system of n ordinary differential equations in
the interval (a, b) with b > a. The system is written in the form

y′
i = fi(x, y1, y2, . . . , yn) , i = 1, 2, . . . , n (1)

and the derivatives fi are evaluated by a subroutine FCN supplied by the user. With the differential
equations (1) must be given a system of n (nonlinear) boundary conditions

gi(y(a), y(b)) = 0 , i = 1, 2, . . . , n

where
y(x) = [y1(x), y2(x), . . . , yn(x)]

T . (2)

The functions gi are evaluated by a subroutine G supplied by the user. The solution is computed using a
finite-difference technique with deferred correction allied to a Newton iteration to solve the finite-difference
equations. The technique used is described fully in Pereyra [1].

The user must supply an absolute error tolerance and may also supply an initial mesh for the finite-
difference equations and an initial approximate solution (alternatively a default mesh and approximation
are used). The approximate solution is corrected using Newton iteration and deferred correction. Then,
additional points are added to the mesh and the solution is recomputed with the aim of making the error
everywhere less than the user’s tolerance and of approximately equidistributing the error on the final
mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If, on
the other hand, the solution is required at several specific points then the user should use the interpolation
routines provided in the E01 Chapter Introduction if these points do not themselves form a convenient
mesh.

The Newton iteration requires Jacobian matrices(
∂fi

∂yj

)
,

(
∂gi

∂yj(a)

)
and

(
∂gi

∂yj(b)

)
.

These may be supplied by the user through subroutines JACOBF for
(

∂fi

∂yj

)
and JACOBG for the others.

Alternatively the Jacobians may be calculated by numerical differentiation using the algorithm described
in Curtis et al. [2].

[NP3390/19/pdf] D02RAF.1

D02RAF D02 – Ordinary Differential Equations

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation from
which the Newton iteration will converge, a continuation facility is provided. The user must set up a
family of problems

y′ = f(x, y, ε), g(y(a), y(b), ε) = 0, (3)

where f = [f1, f2, . . . , fn]
T etc., and where ε is a continuation parameter. The choice ε = 0 must give a

problem (3) which is easy to solve and ε = 1 must define the problem whose solution is actually required.
The routine solves a sequence of problems with ε values

0 = ε1 < ε2 < . . . < εp = 1. (4)

The number p and the values εi are chosen by the routine so that each problem can be solved using
the solution of its predecessor as a starting approximation. Jacobians ∂f

∂ε and
∂g
∂ε are required and they

may be supplied by the user via routines JACEPS and JACGEP respectively or may be computed by
numerical differentiation.

4 References

[1] Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential
Equations. Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel, E Denman
and P Nelson) 76 Springer-Verlag

[2] Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J.
Inst. Maths. Applics. 13 117–119

5 Parameters

1: N — INTEGER Input

On entry: the number of differential equations, n.

Constraint: N > 0.

2: MNP — INTEGER Input

On entry: MNP must be set to the maximum permitted number of points in the finite-difference
mesh. If LWORK or LIWORK (see below) is too small then internally MNP will be replaced by
the maximum permitted by these values. (A warning message will be output if on entry IFAIL is
set to obtain monitoring information.)

Constraint: MNP ≥ 32.

3: NP — INTEGER Input/Output

On entry: NP must be set to the number of points to be used in the initial mesh.

Constraint: 4 ≤ NP ≤ MNP.

On exit: the number of points in the final mesh.

4: NUMBEG — INTEGER Input

On entry: the number of left-hand boundary conditions (that is the number involving y(a) only).

Constraint: 0 ≤ NUMBEG < N.

5: NUMMIX — INTEGER Input

On entry: the number of coupled boundary conditions (that is the number involving both y(a) and
y(b)).

Constraint: 0 ≤ NUMMIX ≤ N – NUMBEG.

D02RAF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02RAF

6: TOL — real Input

On entry: a positive absolute error tolerance. If

a = x1 < x2 < . . . < xNP = b

is the final mesh, zj(xi) is the jth component of the approximate solution at xi, and yj(x) is the jth
component of the true solution of (1) and (2), then, except in extreme circumstances, it is expected
that

|zj(xi)− yj(xi)| ≤ TOL , i = 1, 2, . . . ,NP ; j = 1, 2, . . . , n. (5)

Constraint: TOL > 0.0.

7: INIT — INTEGER Input

On entry: indicates whether the user wishes to supply an initial mesh and approximate solution
(INIT �= 0) or whether default values are to be used, (INIT = 0).

8: X(MNP) — real array Input/Output

On entry: the user must set X(1) = a and X(NP) = b. If INIT = 0 on entry a default equispaced
mesh will be used, otherwise the user must specify a mesh by setting X(i) = xi, for i = 2,3,...NP−1.

Constraints:

X(1) < X(NP), if INIT = 0,

X(1) < X(2) <... < X(NP), if INIT �= 0.

On exit: X(1),X(2),...,X(NP) define the final mesh (with the returned value of NP) and X(1) = a
and X(NP) = b.

9: Y(IY,MNP) — real array Input/Output

On entry: if INIT = 0, then Y need not be set.

If INIT �= 0, then the array Y must contain an initial approximation to the solution such that Y(j, i)
contains an approximation to

yj(xi) , i = 1, 2, . . . ,NP ; j = 1, 2, . . . , n.

On exit: the approximate solution zj(xi) satisfying (5) on the final mesh, that is

Y(j, i) = zj(xi) , i = 1, 2, . . . ,NP ; j = 1, 2, . . . , n,

where NP is the number of points in the final mesh. If an error has occurred then Y contains the
latest approximation to the solution. The remaining columns of Y are not used.

10: IY — INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which D02RAF
is called.

Constraint: IY ≥ N.

11: ABT(N) — real array Output

On exit: ABT(i), for i = 1, 2, . . . , n, holds the largest estimated error (in magnitude) of the ith
component of the solution over all mesh points.

12: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y′
i) at a general point x for a given value

of ε, the continuation parameter (see Section 3).

[NP3390/19/pdf] D02RAF.3

D02RAF D02 – Ordinary Differential Equations

Its specification is:

SUBROUTINE FCN(X, EPS, Y, F, N)
INTEGER N
real X, EPS, Y(N), F(N)

1: X — real Input
On entry: the value of the argument x.

2: EPS — real Input
On entry: the value of the continuation parameter, ε. This is 1 if continuation is not being
used.

3: Y(N) — real array Input
On entry: the value of the argument yi, for i = 1, 2, . . . , n.

4: F(N) — real array Output
On exit: the values of fi, for i = 1, 2, . . . , n.

5: N — INTEGER Input
On entry: the number of equations.

FCN must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

13: G — SUBROUTINE, supplied by the user. External Procedure

G must evaluate the boundary conditions in equation (3) and place them in the array BC.

Its specification is:

SUBROUTINE G(EPS, YA, YB, BC, N)
INTEGER N
real EPS, YA(N), YB(N), BC(N)

1: EPS — real Input
On entry: the value of the continuation parameter, ε. This is 1 if continuation is not being
used.

2: YA(N) — real array Input
On entry: the value yi(a), for i = 1, 2, . . . , n.

3: YB(N) — real array Input
On entry: the value yi(b), for i = 1, 2, . . . , n.

4: BC(N) — real array Output
On exit: the values gi(y(a), y(b), ε), for i = 1, 2, . . . , n. These must be ordered as follows:

(i) first, the conditions involving only y(a) (see NUMBEG description above);
(ii) next, the NUMMIX coupled conditions involving both y(a) and y(b) (see NUMMIX

description above); and,
(iii) finally, the conditions involving only y(b) (N−NUMBEG−NUMMIX).

5: N — INTEGER Input
On entry: the number of equations, n.

G must be declared as EXTERNAL in the (sub)program from which D02RAF is called. Parameters
denoted as Input must not be changed by this procedure.

D02RAF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02RAF

14: IJAC — INTEGER Input

On entry: indicates whether or not the user is supplying Jacobian evaluation routines. If IJAC
�= 0 then the user must supply routines JACOBF and JACOBG and also, when continuation is
used, routines JACEPS and JACGEP. If IJAC = 0 numerical differentiation is used to calculate the
Jacobian and the routines D02GAZ, D02GAY, D02GAZ and D02GAX respectively may be used as
the dummy parameters.

15: JACOBF — SUBROUTINE, supplied by the user. External Procedure

JACOBF must evaluate the Jacobian
(

∂fi

∂yj

)
for i, j = 1, 2, . . . , n, given x and yj , for j = 1, 2, . . . , n.

Its specification is:

SUBROUTINE JACOBF(X, EPS, Y, F, N)
INTEGER N
real X, EPS, Y(N), F(N,N)

1: X — real Input
On entry: the value of the argument x.

2: EPS — real Input
On entry: the value of the continuation parameter ε. This is 1 if continuation is not being
used.

3: Y(N) — real array Input
On entry: the value of the argument yi, for i = 1, 2, . . . , n.

4: F(N,N) — real array Output
On exit: F(i, j) must be set to the value of ∂fi

∂yj
, evaluated at the point (x, y), for i, j =

1, 2, . . . , n.

5: N — INTEGER Input
On entry: the number of equations, n.

JACOBF must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

16: JACOBG — SUBROUTINE, supplied by the user. External Procedure

JACOBG must evaluate the Jacobians
(

∂gi

∂yj(a)

)
and

(
∂gi

∂yj(b)

)
. The ordering of the rows of AJ and

BJ must correspond to the ordering of the boundary conditions described in the specification of
subroutine G above.

Its specification is:

SUBROUTINE JACOBG(EPS, YA, YB, AJ, BJ, N)
INTEGER N
real EPS, YA(N), YB(N), AJ(N,N), BJ(N,N)

1: EPS — real Input
On entry: the value of the continuation parameter, ε. This is 1 if continuation is not being
used.

2: YA(N) — real array Input
On entry: the value yi(a), for i = 1, 2, . . . , n.

3: YB(N) — real array Input
On entry: the value yi(b), for i = 1, 2, . . . , n.

[NP3390/19/pdf] D02RAF.5

D02RAF D02 – Ordinary Differential Equations

4: AJ(N,N) — real array Output
On exit: AJ(i, j) must be set to the value ∂gi

∂yj(a) , for i, j = 1, 2, . . . , n.

5: BJ(N,N) — real array Output
On exit: BJ(i, j) must be set to the value ∂gi

∂yj(b)
, for i, j = 1, 2 . . . , n.

6: N — INTEGER Input
On entry: the number of equations, n.

JACOBG must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

17: DELEPS — real Input/Output

On entry: DELEPS must be given a value which specifies whether continuation is required.
If DELEPS ≤ 0.0 or DELEPS ≥ 1.0 then it is assumed that continuation is not required.
If 0.0 < DELEPS < 1.0 then it is assumed that continuation is required unless DELEPS <
sqrtmachine precision when an error exit is taken. DELEPS is used as the increment ε2 − ε1 (see
(4)) and the choice DELEPS = 0.1 is recommended.

On exit: an overestimate of the increment εp − εp−1 (in fact the value of the increment which would
have been tried if the restriction εp = 1 had not been imposed). If continuation was not requested
then DELEPS = 0.0.

If continuation is not requested then the parameters JACEPS and JACGEP may be replaced by
dummy actual parameters in the call to D02RAF. (D02GAZ and D02GAX respectively may be used
as the dummy parameters.)

18: JACEPS — SUBROUTINE, supplied by the user. External Procedure

JACEPS must evaluate the derivative ∂fi

∂ε given x and y if continuation is being used.

Its specification is:

SUBROUTINE JACEPS(X, EPS, Y, F, N)
INTEGER N
real X, EPS, Y(N), F(N)

1: X — real Input
On entry: the value of the argument x.

2: EPS — real Input
On entry: the value of the continuation parameter, ε.

3: Y(N) — real array Input
On entry: the solution values yi at the point x, for i = 1, 2, . . . , n.

4: F(N) — real array Output
On exit: F(i) must contain the value ∂fi

∂ε at the point (x, y), for i = 1, 2, . . . , n.

5: N — INTEGER Input
On entry: the number of equations, n.

JACEPS must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

D02RAF.6 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02RAF

19: JACGEP — SUBROUTINE, supplied by the user. External Procedure

JACGEP must evaluate the derivatives ∂gi

∂ε if continuation is being used.

Its specification is:

SUBROUTINE JACGEP(EPS, YA, YB, BCEP, N)
INTEGER N
real EPS, YA(N), YB(N), BCEP(N)

1: EPS — real Input
On entry: the value of the continuation parameter, ε.

2: YA(N) — real array Input
On entry: the value of yi(a), for i = 1, 2, . . . , n.

3: YB(N) — real array Input
On entry: the value of yi(b), for i = 1, 2, . . . , n.

4: BCEP(N) — real array Output
On exit: BCEP(i) must contain the value of ∂gi

∂ε , for i = 1, 2, . . . , n.

5: N — INTEGER Input
On entry: the number of equations, n.

JACGEP must be declared as EXTERNAL in the (sub)program from which D02RAF is called.
Parameters denoted as Input must not be changed by this procedure.

20: WORK(LWORK) — real array Workspace
21: LWORK — INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which D02RAF
is called.

Constraint: LWORK ≥ MNP × (3N2 +6N+2)+4N2+3N.

22: IWORK(LIWORK) — INTEGER array Workspace
23: LIWORK — INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which D02RAF
is called.

Constraints:

LIWORK ≥ MNP × (2×N+1)+N, if IJAC �= 0,
LIWORK ≥ MNP × (2×N+1) + N2 + 4 × N + 2, if IJAC = 0.

24: IFAIL — INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);
c = 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

[NP3390/19/pdf] D02RAF.7

D02RAF D02 – Ordinary Differential Equations

6 Error Indicators and Warnings

For each error, an explanatory error message is output on the current error message unit (as defined by
X04AAF), unless suppressed by the value of IFAIL on entry.

Errors detected by the routine:

IFAIL = 1

One or more of the parameters N, MNP, NP, NUMBEG, NUMMIX, TOL, DELEPS, LWORK or
LIWORK has been incorrectly set, or X(1) ≥X(NP) or the mesh points X(i) are not in strictly
ascending order.

IFAIL = 2

A finer mesh is required for the accuracy requested; that is MNP is not large enough. This error
exit normally occurs when the problem being solved is difficult (for example, there is a boundary
layer) and high accuracy is requested. A poor initial choice of mesh points will make this error
exit more likely.

IFAIL = 3

The Newton iteration has failed to converge. There are several possible causes for this error:

(i) faulty coding in one of the Jacobian calculation routines;
(ii) if IJAC = 0 then inaccurate Jacobians may have been calculated numerically (this is a very

unlikely cause); or,
(iii) a poor initial mesh or initial approximate solution has been selected either by the user or by

default or there are not enough points in the initial mesh. Possibly, the user should try the
continuation facility.

IFAIL = 4

The Newton iteration has reached round-off error level. It could be however that the answer
returned is satisfactory. The error is likely to occur if too high an accuracy is requested.

IFAIL = 5

The Jacobian calculated by JACOBG (or the equivalent matrix calculated by numerical
differentiation) is singular. This may occur due to faulty coding of JACOBG or, in some
circumstances, to a zero initial choice of approximate solution (such as is chosen when INIT = 0).

IFAIL = 6

There is no dependence on ε when continuation is being used. This can be due to faulty coding of
JACEPS or JACGEP or, in some circumstances, to a zero initial choice of approximate solution
(such as is chosen when INIT = 0).

IFAIL = 7

DELEPS is required to be less than machine precision for continuation to proceed. It is likely
that either the problem (3) has no solution for some value near the current value of ε (see the
advisory print out from D02RAF) or that the problem is so difficult that even with continuation
it is unlikely to be solved using this routine. If the latter cause is suspected then using more mesh
points initially may help.

IFAIL = 8
IFAIL = 9

Indicates that a serious error has occurred in a call to D02RAF or D02RAR. Check all array
subscripts and subroutine parameter lists in calls to D02RAF. Seek expert help.

7 Accuracy

The solution returned by the routine will be accurate to the user’s tolerance as defined by the relation
(5) except in extreme circumstances. The final error estimate over the whole mesh for each component
is given in the array ABT. If too many points are specified in the initial mesh, the solution may be more
accurate than requested and the error may not be approximately equidistributed.

D02RAF.8 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02RAF

8 Further Comments

There are too many factors present to quantify the timing. The time taken by the routine is negligible
only on very simple problems.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation.

In the case where the user wishes to solve a sequence of similar problems, the use of the final mesh and
solution from one case as the initial mesh is strongly recommended for the next.

9 Example

We solve the differential equation
y′′′ = −yy′′ − 2ε(1− y′2)

with ε = 1 and boundary conditions

y(0) = y′(0) = 0, y′(10) = 1

to an accuracy specified by TOL = 1.0E−4. The continuation facility is used with the continuation
parameter ε introduced as in the differential equation above and with DELEPS = 0.1 initially. (The
continuation facility is not needed for this problem and is used here for illustration.)

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02RAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, MNP, IY, LWORK, LIWORK
PARAMETER (N=3,MNP=40,IY=N,LWORK=MNP*(3*N*N+6*N+2)

+ +4*N*N+3*N,LIWORK=MNP*(2*N+1)+N)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real DELEPS, TOL
INTEGER I, IFAIL, IJAC, INIT, J, NP, NUMBEG, NUMMIX

* .. Local Arrays ..
real ABT(N), WORK(LWORK), X(MNP), Y(IY,MNP)
INTEGER IWORK(LIWORK)

* .. External Subroutines ..
EXTERNAL D02RAF, FCN, G, JACEPS, JACGEP, JACOBF, JACOBG,

+ X04ABF
* .. Executable Statements ..

WRITE (NOUT,*) ’D02RAF Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’Calculation using analytic Jacobians’
CALL X04ABF(1,NOUT)
TOL = 1.0e-4
NP = 17
NUMBEG = 2
NUMMIX = 0
X(1) = 0.0e0
X(NP) = 10.0e0
INIT = 0
DELEPS = 0.1e0
IJAC = 1

[NP3390/19/pdf] D02RAF.9

D02RAF D02 – Ordinary Differential Equations

* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

*
CALL D02RAF(N,MNP,NP,NUMBEG,NUMMIX,TOL,INIT,X,Y,N,ABT,FCN,G,IJAC,

+ JACOBF,JACOBG,DELEPS,JACEPS,JACGEP,WORK,LWORK,IWORK,
+ LIWORK,IFAIL)

*
IF (IFAIL.EQ.0 .OR. IFAIL.EQ.4) THEN

IF (IFAIL.EQ.4) WRITE (NOUT,99996)
+ ’On exit from D02RAF IFAIL = ’, IFAIL

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Solution on final mesh of ’, NP, ’ points’
WRITE (NOUT,*)

+ ’ X(I) Y1(I) Y2(I) Y3(I)’
WRITE (NOUT,99998) (X(J),(Y(I,J),I=1,N),J=1,NP)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Maximum estimated error by components’
WRITE (NOUT,99997) (ABT(I),I=1,N)

ELSE
WRITE (NOUT,99996) ’On exit from D02RAF IFAIL = ’, IFAIL

END IF
20 STOP

*
99999 FORMAT (1X,A,I2,A)
99998 FORMAT (1X,F10.3,3F13.4)
99997 FORMAT (11X,1P,3e13.2)
99996 FORMAT (1X,A,I3)

END
*

SUBROUTINE FCN(X,EPS,Y,F,M)
* .. Scalar Arguments ..

real EPS, X
INTEGER M

* .. Array Arguments ..
real F(M), Y(M)

* .. Executable Statements ..
F(1) = Y(2)
F(2) = Y(3)
F(3) = -Y(1)*Y(3) - 2.0e0*(1.0e0-Y(2)*Y(2))*EPS
RETURN
END

*
SUBROUTINE G(EPS,Y,Z,AL,M)

* .. Scalar Arguments ..
real EPS
INTEGER M

* .. Array Arguments ..
real AL(M), Y(M), Z(M)

* .. Executable Statements ..
AL(1) = Y(1)
AL(2) = Y(2)
AL(3) = Z(2) - 1.0e0
RETURN
END

*

D02RAF.10 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02RAF

SUBROUTINE JACEPS(X,EPS,Y,F,M)
* .. Scalar Arguments ..

real EPS, X
INTEGER M

* .. Array Arguments ..
real F(M), Y(M)

* .. Executable Statements ..
F(1) = 0.0e0
F(2) = 0.0e0
F(3) = -2.0e0*(1.0e0-Y(2)*Y(2))
RETURN
END

*
SUBROUTINE JACGEP(EPS,Y,Z,AL,M)

* .. Scalar Arguments ..
real EPS
INTEGER M

* .. Array Arguments ..
real AL(M), Y(M), Z(M)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
DO 20 I = 1, M

AL(I) = 0.0e0
20 CONTINUE

RETURN
END

*
SUBROUTINE JACOBF(X,EPS,Y,F,M)

* .. Scalar Arguments ..
real EPS, X
INTEGER M

* .. Array Arguments ..
real F(M,M), Y(M)

* .. Local Scalars ..
INTEGER I, J

* .. Executable Statements ..
DO 40 I = 1, M

DO 20 J = 1, M
F(I,J) = 0.0e0

20 CONTINUE
40 CONTINUE

F(1,2) = 1.0e0
F(2,3) = 1.0e0
F(3,1) = -Y(3)
F(3,2) = 4.0e0*Y(2)*EPS
F(3,3) = -Y(1)
RETURN
END

*
SUBROUTINE JACOBG(EPS,Y,Z,A,B,M)

* .. Scalar Arguments ..
real EPS
INTEGER M

* .. Array Arguments ..
real A(M,M), B(M,M), Y(M), Z(M)

[NP3390/19/pdf] D02RAF.11

D02RAF D02 – Ordinary Differential Equations

* .. Local Scalars ..
INTEGER I, J

* .. Executable Statements ..
DO 40 I = 1, M

DO 20 J = 1, M
A(I,J) = 0.0e0
B(I,J) = 0.0e0

20 CONTINUE
40 CONTINUE

A(1,1) = 1.0e0
A(2,2) = 1.0e0
B(3,2) = 1.0e0
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02RAF Example Program Results

Calculation using analytic Jacobians

Solution on final mesh of 33 points
X(I) Y1(I) Y2(I) Y3(I)

0.000 0.0000 0.0000 1.6872
0.063 0.0032 0.1016 1.5626
0.125 0.0125 0.1954 1.4398
0.188 0.0275 0.2816 1.3203
0.250 0.0476 0.3605 1.2054
0.375 0.1015 0.4976 0.9924
0.500 0.1709 0.6097 0.8048
0.625 0.2530 0.6999 0.6438
0.703 0.3095 0.7467 0.5563
0.781 0.3695 0.7871 0.4784
0.938 0.4978 0.8513 0.3490
1.094 0.6346 0.8977 0.2502
1.250 0.7776 0.9308 0.1763
1.458 0.9748 0.9598 0.1077
1.667 1.1768 0.9773 0.0639
1.875 1.3815 0.9876 0.0367
2.031 1.5362 0.9922 0.0238
2.188 1.6915 0.9952 0.0151
2.500 2.0031 0.9983 0.0058
2.656 2.1591 0.9990 0.0035
2.813 2.3153 0.9994 0.0021
3.125 2.6277 0.9998 0.0007
3.750 3.2526 1.0000 0.0001
4.375 3.8776 1.0000 0.0000
5.000 4.5026 1.0000 0.0000
5.625 5.1276 1.0000 0.0000
6.250 5.7526 1.0000 0.0000
6.875 6.3776 1.0000 0.0000
7.500 7.0026 1.0000 0.0000
8.125 7.6276 1.0000 0.0000

D02RAF.12 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02RAF

8.750 8.2526 1.0000 0.0000
9.375 8.8776 1.0000 0.0000

10.000 9.5026 1.0000 0.0000

Maximum estimated error by components
6.92E-05 1.81E-05 6.42E-05

[NP3390/19/pdf] D02RAF.13 (last)

